Magnetic Coupling in the Quiet Solar Atmosphere
نویسنده
چکیده
Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfvén and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the magnetic field also couples to the radiation field, which leads to radiative flux channeling and increased anisotropy in the radiation field. It is shown how faculae can be understood in terms of this effect. The article starts with an introduction to the magnetic field of the quiet Sun in the light of new results from the Hinode space observatory and with a brief survey of measurements of the turbulent magnetic field with the help of the Hanle effect.
منابع مشابه
Recycling of the Solar Corona’s Magnetic Field
Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ∼1016 Mx up to ∼ Mx. The tireless motion of these magnetic 20 3 # 10 flux concentrations, along with the continual appearance an...
متن کاملCoupling from the photosphere to the chromosphere and the corona
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and large...
متن کاملEvidence for collisional depolarization in the MgH lines of the second solar spectrum
Analysis of the Hanle effect in solar molecular lines allows us to obtain empirical information on hidden, mixed-polarity magnetic fields at subresolution scales in the (granular) upflowing regions of the ‘quiet’ solar photosphere. Here we report that collisions seem to be very efficient in depolarizing the rotational levels of MgH lines. This has the interesting consequence that in the upflowi...
متن کاملMaquette Revue E
The Earth’s magnetic field creates a cavity in interplanetary space, called the magnetosphere. Physical processes in this region of space determine how mass and energy from the solar wind reach the ionosphere, the partially ionized upper atmosphere. Magnetosphere and ionosphere are strongly coupled. Together, they modulate the impacts of solar activity on man and technology. This paper presents...
متن کاملAlfvén waves as a solar-interplanetary driver of the thermospheric disturbances
Alfvén waves have been proposed as an important mechanism for the heating of the Sun's outer atmosphere and the acceleration of solar wind, but they are generally believed to have no significant impact on the Earth's upper atmosphere under quiet geomagnetic conditions due to their highly fluctuating nature of interplanetary magnetic field (i.e., intermittent southward magnetic field component)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009